6月30日-7月1日 陈文雄教授系列讲座报告

发布时间:2019-06-24   浏览次数:134

报 告 人:陈文雄 教授(美国纽约Yeshiva 大学)

报告题目:Maximum principles, sliding methods, and method of moving planes in unbounded regions

报告时间:2019年6月30日(周日)下午2:30-5:30      2019年7月01日(周一)下午2:30-5:30

报告地点:23C102

报告人简介:

陈文雄,美国纽约Yeshiva 大学终身教授,数学系主任,国际知名的数学家。曾多次获得美国国家科学基金奖。担任Nonlinear Analysis: Theory, Methods&Applications 及 Communications on Pure and Applied Analysis 两个SCI 数学杂志的编辑。研究方向为非线性偏微分方程,目前以分数阶Laplace 方程为主。

他曾先后在如下的SCI一区数学期刊上发表3篇论文:Annals of Mathematics: 1 篇,Communications of Pure and Applied Mathematics: 2 篇。

根据 GoogleScholar,他在1991 年Duke Math. J.上发表的名为 Classification of solutions of some nonlinear elliptic equations 一篇被引高达 750次以上。在 2006年 CPAM 上发表的名为Classification for the solutions of integral equations 一篇被引高达 400 次以上。

近年来,他在Advances in Mathematics 发表的文章中有三篇被列为高被引(Highly Cited).出版专著《Methods on Nonlinear Elliptic Equations》一本。即将出版另一本专著《The Fractional Laplacian》。

报告摘要:

In this talk, we will summarized our recent results on maximum principles, sliding methods, and method of moving planes for nonlinear equationsinvolving fractional Laplacians, fractional p-Laplacians, and other nonlocalnonlinear operators on unbounded domains. Our approaches are completelydi_erent from the traditional ones. Instead of estimating a sequence of equations, we evaluate the singular integrals de_ning the nonlocal operators along a sequence of approximate maximum points. This new method not only enable us to deal with nonlinear nonlocal operators, such as the fractional p-Laplacians, but also enable us to weaken the conditions on the domains and on the nonlinearities.

联 系 人: 吕中学